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Abtdnet-A large elastic solid containing an infinite sequence of slitlike relaxed cracks with a constant
distance of vertical separation is considered. The solid is deforming under plilDe strain shear conditions
(mode m. The plastic relaxation around each of the cracks is represented by a suitable distribution of edge
dislocations coplanar with the crack itself, the distribution beingdetermined from a singular intearal equation.
This equation is solved numerically using an expansion of the non-singular part of the kernel in a series of
Chebyshev polynomials. Solutions are obtained for the extent of spread of plasticity from each crack and for
the associated dislocation distribution as a function of the crack spacing and the applied load. The results are
applied to a brief discussion of the fracture process at stress concentrations using the crack opening
displacement criterion.

INTRODUCTION

A common feature of most natural and manufactured solid materials is the presence in them of
randomly oriented and distributed cracks of various types and scales. These cracks
(inhomogeneities) can significantly alter the gross elastic response of a. solid through an
interaction of their stress fields, especially if they are separated by less than several crack
lengths. Similarly, the relaxation of stresses round the inhomogeneities can distinctly change the
fracture characteristics of the solid. However, an exact analytical investigation is almost
impossible owing to the randomness of the orientation and of the distribution of cracks.
Nevertheless, a fairly accurate estimate of the change in the elastic response of the solid with
inhomogeneities and in the relaxation of stresses round the latter can be obtained by studying an
infinite homogeneous and isotropic elastic solid containing a regular distribution of cracks.

Thus, Louat[l] treated the case of a solid in anti-plane strain state with an infinite sequence
("stack") of un-relaxed cracks, while Smith[2] gave exact solutions for the extent of spread of
plasticity from each crack. The model of an infinite solid with an isolated relaxed crack was
considered by, among others, Bilby, Cottrell and Swinden[3], Dugdale[4], Rice [S], Kostrov and
Nikitin[6], Karihaloo(7]. Koiter[8] studied the problem of an infinite solid in in-plane shear state
with a single periodic stack of un-relaxed cracks, while Smith[2] gave approximate solutions for
the spread of plasticity from each crack for the less interesting case of widely spaced cracks.
Again, Koiter[9] and, later, Paris and Sih[lO] solved the problem of a solid subjected to in-plane
shear stress and containing an infinite row of collinear unrelaxed cracks; an exact solution of the
corresponding problem of relaxed cracks was given by Bilby, Cottrell, Smith and Swinden[ll].
Here, it is worth mentioning that, no matter whether the body containing an infinite row of
collinear relaxed cracks deforms in antiplane strain mode (mode III) or under plane strain shear
conditions (mode II), the results for the extent of spread of plasticity will be identical and the
corresponding dislocation distribution functions, representing the slitlike cracks, will differ only
by a constant factor involving Poisson's ratio.

The problem of a solid subjected to tensile loading (mode I) and containing an infinite row of
collinear unrelaxed cracks was studied by Benthem and Koiter[l2]. A more difficult problem of
an infinite solid containing a doubly periodic rectangular array of unrelaxed slitlike cracks was
examined in detail for all the three modes of loading by Delameter, Herrmann and Barnett[l3]
and Delameter and Herrmann[l4]. These authors based their study on the equivalence of slitlike
cracks and suitable distributions of straight dislocations, discussed in detail by Bilby and
Eshelby[lS]. This seems to be the only feasible method, because the mapping technique normally
used in solving the simplest crack problems presents formidable mathematical diffiCUlties.
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The aim of the present study is to extend the dislocation modelling technique to the
investigation of stress relaxation round inhomogeneities that are not coplanar. Thus, section I
considers the in-plane shear model of the spread of plasticity from an infinite sequence of cracks
Ixl:s c, y = ± nh (n = 0,1,2, etc.) in an infinite elastic solid subject to an applied shear stress
(J'XY = (J' at infinity; the singular integral equation governing the problem cannot be readily solved
in an exact form. Instead, an efficient approximate procedure is presented which uses an
expansion of the non-singular part of the kernel in a series of Chebyshev polynomials (Section 2).
The models of an infinite sequence of non-coplanar unrelaxed cracks (Koiter[8J), an isolated
relaxed crack (Bilby et al.[3J) and Smith's[2] model for widely spaced cracks deforming under
in-plane shear conditions, form particular cases of the present study. In Section 3 the in-plane
shear results are used to discuss briefly some applications to the problem of fracture at stress
concentrations, in particular, when the cracks are closely spaced.

I. THE IN·PLANE SHEAR MODEL (MODE II)

Let us consid~r the spread of plasticity from an infinite sequence of cracks Ix I:s c, y = ± nh in
an infinite, isotropicaUy elastic solid deforming in a plane strain mode (sliding mode II) under an
externally applied shear stress (J'"y = (J', the displacement discontinuity across each crack being in
the x-direction. This discontinuity along each of the planes y = ±nh can be represented by a
continuous distribution of long edge dislocations parallel to the x-axis and lying in the planes
y = ± nh. Plastic relaxation around the tips of the cracks is represented by edge dislocations
coplanar with the cracks, the resistance to motion of these dislocations being due to a friction
stress (taken to be equal to the yield stress of the material) (J'y > (J', and not zero as for the
dislocations which represent the freely slipping cracks. If the plastic zones spread out to a
distance a, positive and negative edge dislocations (positive edges have their extra half-plane_of
atoms in the positive y-direction) lie respectively in the intervals O:s X :s a, y = ± nh and
- a :S x :S 0, Y= ± nh. Those in the plastically relaxed regions ahead of the cracks c < IxI:S a,
y =± nh are subject to a net applied stress (J'Xy = (J' - (J'y, in addition to the interaction stresses
from all the other dislocations, whilst those in the ranges IxI< c, Y =± nh are subject to a stress
(J'"y C1, besides the various interaction stresses.

It is evident that the distribution of dislocations will be the same in each of the planes
y ± nh. Thus we suppose that there are f(x )6x dislocations each of Burgers vector b > 0 in any
interval 6x. We are required to determine f(x) and the relation between c and a for various
values of the physical parameters (J'y and (J' as a function of the crack spacing h.

In order to calculate the interaction stresses the problem can be considered as one involving
the interaction between vertical arrays of edge dislocations. The shear stress C1xy (the normal
stress (J'yy = 0 due to symmetry, so that the crack is freely slipping) due to such an array of
positive edge dislocations situated in the plane x =x I is

(1)

at a point x along one of the planes y =± nh, where fL is the shear modulus, b the Burgers vector
of each edge dislocation, and p Poisson's ratio.

The infinite sum over n can be evaluated in terms of hyperbolic sine, and (l) may be rewritten

as
p,b 1 [ 7T(X - x')/h ]2

(J'xy = 27T(l- p)(x - x') sinh 17'(X - x')/h .
(2)

Hence, the integral equation, which expresses the requirement that the resultant shear stress on
any dislocation in the distribution vanish when the system is in equilibrium, can be obtained by
summing the effects due to all the other dislocations, and is

f" p,b _1_[ 17'(x-x')/h ]2f (X')dX'+T(X)=O
_" 217'(1 p)(x-x') sinh7T(x-x')fh

(3)

for Ixl:s at where T(X) is the applied stress at x and it is understood that the Cauchy principal
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value of the singular integral is used. This singular integral equation, in contrast to the
corresponding equation for anti-plane strain model, does not seem to have a closed form solution
for the distribution function f(x ' ). An iterative solution was presented by Smith[2J for the less
interesting case of widely spaced cracks. However, from a practical point of view, the more
important case is when the cracks are close together. We present in the next section an efficient
approximate method of solution (using orthogonal polynomial expansions) that is uniformly valid
for all values of crack spacing. Before that we modify eqn (3) and introduce non-dimensional
variables.

Let XI =x/a, x; =X'/a, hI =h/1Tc, f(xD =p,b/(x /)/21T(1-1I)Uy and denote a = cia (s I,
equality holding for unrelaxed cracks). Then eqn (3) takes the following form (subscript 1 has
been omitted)

II I [ (x-x')/ah ]2 I I _

-(-,) . h ( ')1 h /(x) dx +P(x) - 0,
_I X - X sm x - X a

(4)

where P(x) =uluy in the interval Os lxl s a and P(x) =u/uy -1 in the plastic regions ahead of
the crack tips a< Ix lsI.

Furthermore, let us rewrite (4) as follows

fl f(XI){_t_, +K(x',x)} dx' +P(x)=O,
-I x-x

where the non-singular part K (x' , x) of the kernel is given by

K(x' X)=_t_{( (x-x')/ah )2_ t }
, (x - x') sinh (x - x')/ah .

(5)

(6)

It may be noted that, as X~X', K(X',X)~O. It is also interesting to note that K(x',x)
represeats the additional stress due to the interaction of crllcks. In fact, for an isolated relaxed
crack, (5) coincides with the corresponding singular integral equation of Bilby et aI.13}, wilen
K(x',x)=O.

2. METHOD OF SOLUTION

As mentioned above, the singular integral eqn (5) does not seem to have a closed-form
solution. We, therefore employ an approximate method of solution, similar to that used in Refs.
[13, 14J. This method proves to be quite efficient for obtaining accurate numerical results.

For given values of hand u IU y, the non-singular part of the kernel K (x I , x) is known. (It
should be mentioned that a and uluy are related through the necessary condition for the
existence of a solution to the singular integral eqn (5), see below). It may thus be expanded in a
series of orthogonal polynomials in the variable x, the coefficients of the series being functions of
x'. Chebyshev polynomials seem to be eminently suitable for our purpose, as will become clear
later. We therefore assume that

...
K(x',x)= I A.. (x ')T.. (x),

,.-0

where T..(x) is the nth Chebyshev polynomial of the first kind, defined by

T"(x) =cos (n cos·J x),

(7)

with To<x) =I, TI(x) =x, T2(x) = 2x 2 -1, and so on. From the orthogonality property of T.. (x),
viz,

fl ~..(xw dx =1T, if n =0
-I 1-x2

1T/2, if n ;:: I, Z, 3, ...
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it follows that

and

1 I'Ao(x')=-
'IT _I

K(x', x) dx
vT=?

An(X,)=lf ' K(~(X)dX; n = 1,2,3, ....
'IT -I I-x

Substituting (7) in (5), we get

which may be rewritten in a concise form as

11 f(x') , ~

(~)dx = L anTn(X)-P(X),
-I x x n~O

where

an = - L'I f(x')An(x') dx'.

The condition for the existence of a solution of the singular integral eqn (10) is [16]

~anil Tn(X)2dx-I' P(X)2dx=0,
n-O -I \/1- X -1 v'T="?

(8)

(9)

(10)

(11)

(12)

f(x) then vanishing at the tips of the plastic zones (x = ± 1) ahead of the cracks. Equation (12)
specifies the distance to which the dislocations (yield zones) spread under a given applied stress
0', i.e. it gives a relation between a and O'fO'y. In fact, as a consequence of the orthogonality
properties

and

eqn (12) reduces to

II P(x)
'lTao - \/ dx = 0,

-1 l-x 2

whence it follows that

_ 'IT ( 0' )cos J a ="2 O'y - ao .

The corresponding expression for an isolated relaxed crack is

_I 'IT 0'
cos a =-­

2 O'y

(13)

A comparison of these two expressions easily shows that the additional term ('IT 12)ao is a
manifestation of the presence of an infinite sequence of relaxed cracks.
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When the existence condition (13) is satisfied. eqn (10) gives the distribution function

Integrating the second term on the right-hand side of (14). we get

(x) = - Vl=?fl P(A) dA
11 7T 2 _I ~(A -x)

= ~2{COSh-1 (I~__a:1) -cosh-I (\~++a:\)}.
Furthermore. let

"'n(X) =vt="?fl Tn(A) dA. n =0.1.2•."...
7T

2
_I VI-A 2(A -x)

Equation (14) then takes the form

~

f(x) =~ anf/l,;(x) + 11 (x).
n-O
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(14)

(15)

It may be noted that l1(X) is the solution for an isolated relaxed crack. The an s are as yet
unknown. However. before proceeding with their determination it is worthwhile simplifying the
functions "'n' It is easily shown that

v't=?fl dA
"'O<x) = 7T 2 _I ~(A -x)

=0.

Furthermore. as a consequence of the identity

II ~(A) dA = 7TUn (X). n =0.1.2....
-I .I-A (A -x)

we have

VI=?
"'n+l(X) = Un (x). n =0.1.2.....

7T

where Un (x) is the nth Chebyshev polynomial of the second kind. defined by

sin [(n + 1) COS-I x]
Un (x) = sin(cos IX) • n=0.1.2•...•

with Uo(x) = 1. UI(x) = 2x. U2(x) = 4x 2 -1. and so on. It should be noted that l1(X) is an odd
function. In fact. it can be shown that the solution f(x) of the singular integral eqn (10) is an odd
function. Consequently. given that "'Jx) = o. (IS) may be rewritten as

~

f(x) = ~ bn"'2n (x) + 11 (x).
n-\
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where '/h" (X) = ('\!f='X2/1T)U2"_I(x) is an odd function. and

b" =-t f(x')A 2"(x')dx'.

The b" 's which are as yet unknown are determined by substituting f(x) into the expression for b".
This leads to an infinite system of linear algebraic equations

where

~

~ Clbj =D"
I-I

;=0.1.2•...• (16)

and

Di=-f I11 (X')A2i(X')dX'
-I

(17)

[;i/ being the Kronecker delta. Having determined the coefficients bIt and. hence. the function
f(x). the original coefficient ao entering (13) is evaluated from

ao = - f, f(x )Ao<x) dx.

For future use. we calculate the number of dislocations in any given interval and the relative
displacement A(x) of the positive side of slip plane with respect to the negative side.

In this connection we integrate the dislocation distribution function between 0 and x and find
the number of dislocations N(x) to be

~ IX 1 _ (Il- axl)= ~ bIt l/12"(x)dx +"2(x -a) cosh 1 -_-
"_I 0 1T a X

1 (Il+axl) 1 _ (1)-1T2(x+a)cosh-1 a+x +21T2 acosh I;.

In particular.

and

The relative displacement A(x) is

A(x) = b{N(1)- N(X)}.

whence it follows that

(18)

where the non-dimensional A*(x) =A(X)1TP./4c(1- v)uy •
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Finally, the relative displacement at x =a (i.e. at crack tip) is given by

'11'2" 11
4*(a) =2a~ b.. '" f/t2,.(x) dx +In (1/a).
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(20)

The expression for an isolated relaxed crack is easily recovered by setting the first term on the right
hand side of (20) equal to zero.

The coefficients b.. were determined for given values of a and h from the linear system of
eqns (16). the system was truncated at i = j = 8, which assured sufficient accuracy for all the
cases treated. Integrals were evaluated by Simpson's rule, after making a change of variables,
where necessary, to render the integrands non-singular. Having evaluated the function I(x) and,
hence, the coefficient ao, the corresponding value of u/uy was evaluated from (13).

The extent of the spread of plasticity as a function of the applied stress and for various values
of crack spacing is shown in Fig. 1. For the sake of comparison, the graph for an isolated
relaxed crack (h ~oo) is also reproduced. The results for widely spaced cracks are in good
agreement with those obtained by Smith[2] by a perturbation technique.

3. DISCUSSION

As is evident from the figure, for a given value of the extent of the spread of plasticity, the
required shear stress u decreases with decreasing distance between the cracks. For a better
appreciation of this fact it is worthwhile considering the behaviour of unrelaxed cracks.

The number N of edge dislocations in each half of one of the planes y =± nh is given by (18).
Since "'.. increases with a reduction of h, it follows that N increases as the cracks come closer.
On the other hand, since N is a measure of the crack opening displacement, it follows that the
effective stress-intensity factor increases with a reduction of the crack spacing (h). This is in
complete agreement with the results reported in [13, 14]. It is also interesting to note that this
conclusion is the opposite of the one for anti-plane shear model, which emphasizes the need for
exercising caution in using anti-plane strain model for predicting the behaviour of the solid in the
more frequent plane strain conditions encountered in practice.

In order to apply the results of the present study to the problem of fracture at stress
concentrations we employ the crack opening displacement criterion, according to which fracture
is initiated at a crack when the relative displacement there 4(c) exceeds some critical value 4.m..
assumed to be a property of the material. Now, as, for a given value of the applied stress u, a
increases as the distance between the cracks decreases (Fig. I), (20) implies that the tendency
towards fracture increases as the cracks come closer, which is just the opposite of what is
expected for an anti-plane shear model.

The above argument serves to indicate how the presence of a number of inhomogeneities
adversely alters the fracture characteristics of a material by lowering the fracture stress in
comparision with that for an isolated crack.

a "c/o
Fig. I. The extent of spread of plasticity a from an infinite sequence of cracks in an infinite solid deforming

under plane strain conditionsdue to u•• =u, for diBerent values ofcrack spacm, h.
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